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Abstract. The recently elaborated approach (Chepulskii R V and Bugaev V N 1998J. Phys.:
Condens. Matter10 7309–26, 7327–48) based on the joint application of the thermodynamic
fluctuation method and perturbation theory is generalized to the case of the presence of not only
pair but also nonpair atomic interactions of arbitrary orders in an alloy. Within such an approach, a
number of new analytical approximations are derived for calculation of the grand thermodynamic
potential as well as of the short-range order parameters and their Fourier transform in disordered
binary alloys of arbitrary compositions and with Bravais crystal lattices. The effective radius of
atomic interactions is not limiteda priori. The inverse effective number of atoms interacting with
one fixed atom as well as the inverse temperature are successively used as a small parameter of
expansion. The developed approach may be also followed in studies of magnetics in the framework
of the Ising model and of fluids and amorphous materials within the lattice gas model as well as in
investigations of low-dimensional lattice systems.

1. Introduction

In [1]†, a number of analytical approximations were elaborated for calculation of the short-
range order (SRO) parameters and their Fourier transform in disordered (i.e. without a long-
range order (LRO)) binary alloys with Bravais crystal lattices and with many-body atomic
interactions of arbitrary orders and effective radii of action. To achieve this aim, the Krivoglaz
approach [2–5] based on application of the thermodynamic fluctuation method within the
mean-field approximation was used. From all the obtained approximations, the generalized
spherical model one yielded the highest numerical accuracy of results.

However, within the spherical model approximation, it is impossible to describe the
phenomenon of temperature dependence of a position in reciprocal space of the SRO Fourier
transform’s maximum in the case of temperature independent atomic interactions. The
presence of nonpair atomic interactions has no effect on this conclusion [1]. Thus, the use
of this approximation is not adequate when the denoted phenomenon takes place, as, for
instance, in Pd–V [6, 7], Cu–Au and Cu–Pd [8–12] as well as Pt–V [13–15] alloys and in a
binary Madelung lattice [7, 16].

In the case of theabsenceof nonpair atomic interactions in an alloy, the denoted
temperature dependence can be correctly (see [7]) described within the ring approximation,

† Despite the erroneous absence of the first number in the title of the previous paper [1], it is in fact the first part of
the present work accordingly numbered as II.
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8646 R V Chepulskii

derived by use of the thermodynamic fluctuation method within the first order of a modified
thermodynamic perturbation theory under the choice of the inverse effective number of atoms
interacting with one fixed atom as a small parameter of expansion [17–20]. For such a
description to be correct also in the case of alloys with nonpair atomic interactions (such
as Cu–Au and Cu–Pd [8–10]), it seems to be useful to generalize the ring approximation to
this case. The present paper is devoted to the performance of such a generalization.

In section 2, the expressions for both the grand partition function and the thermodynamic
potential of the alloy in question are obtained in the framework of the lattice gas model.

In section 3, the traditional cumulant expansion in the thermodynamic perturbation theory
within the lattice gas model is generalized to the case of the presence of many-body atomic
interactions of arbitrary orders in the alloy and the corresponding diagram technique is
developed.

In section 4, the expressions for both the grand thermodynamic potential and the SRO
parameters are obtained within the high-temperature approximation that corresponds to the
account of the terms in the cumulant expansion that are proportional to the zeroth power of
the inverse temperature.

In section 5, the Brout classification of the terms in the cumulant expansion [21–24] is
generalized to the case of the presence of many-body atomic interactions of arbitrary orders
in the alloy.

In sections 6 and 7, the expressions for both the grand thermodynamic potential and the
SRO parameters are obtained within the approximations that are appropriate to the account of
the terms in the cumulant expansion that are proportional to the zeroth as well as zeroth and
first powers of the inverse effective number of atoms interacting with one fixed atom.

In section 8, we describe the details of application of the obtained approximations in
combination with three widely used approaches for calculation of interatomic potentials in
alloys, the generalized perturbation [25–28] and Connolly–Williams [29, 30] methods as well
as the mean-field concentration function theory [31–33].

In section 9, the symmetry aspects are discussed.
In section 10, the conclusions and perspectives are given.

2. Grand thermodynamic potential

In general, in the framework of the lattice gas model, the HamiltonianH of a two-component
A–B alloy with a Bravais crystal lattice and with many-body atomic interactions of arbitrary
orders and radius of action can be written in the following form [1, 34–36]

H = Nv0 +
N∑
n=1

1

n!

∑
R1,R2,...,Rn

V
(n)
R1,R2,...,Rn

CR1CR2 . . . CRn
= Nv0 +

∑
R

V
(1)
R CR

+
1

2

∑
R1,R2

V
(2)
R1,R2

CR1CR2 +
1

6

∑
R1,R2,R3

V
(3)
R1,R2,R3

CR1CR2CR3 + · · · . (2.1)

In (2.1)v0 is the energy per site of an ‘alloy’ in which allN sites are occupied by B-type atoms,

CR =
{

1 if the siteR is occupied by an A-type atom

0 otherwise
(2.2)

∑
R means the summation over allN sites of the crystal lattice,V (n)R1,R2,...,Rn

is the mixing
potential ofnth order (n = 1, 2, . . . , N) [1, 35, 36]

V
(n)
R1,R2,...,Rn

= 0 if Ri = Rj (i, j = 1, 2, . . . , n; i 6= j). (2.3)
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The grand partition function4 of the disordered alloy in question can be presented in the
following form

4 ≡
∑
{CR}

exp[−(kBT )
−1(H − µANA − µBNB)]

= 40

∑
{CR}

exp

[
−(kBT )

−1
N∑
n=2

1

n!

∑
R1,R2,...,Rn

W
(n)
R1,R2,...,Rn

CR1CR2 . . . CRn

]
(2.4)

where

40 = exp[−N(v0 − µB)/(kBT )] (2.5)

W
(n)
R1,R2,...,Rn

=
{
V
(2)
R1,R2

+µδR1,R2 if n = 2

V
(n)
R1,R2,...,Rn

if n > 2
(2.6)

µ = 2(V (1)R − µA +µB) (2.7)

µA,NA andµB,NB are the chemical potentials and the total numbers of A and B-type atoms,
respectively,T is the absolute temperature,kB is the Boltzmann constant, the summation on
{CR} is carried over all possible atomic configurations andδR1,R2 is the Kronecker delta. At
the derivation of (2.4), the symmetry equivalence of the crystal lattice sites in the case of the
disordered state of the alloy was taken into account [35, 36] and the following relationships

NA +NB = N (2.8)

NA =
∑
R

CR (2.9)

[CR]n = CR (2.10)

wheren is a positive integer, were used.
Note that the expression (2.4) for the grand partition function can be converted into

the expression for thecanonicalpartition function by settingµ = 0 (under neglect of the
configuration-independent multiplier). This allows us, if need be, to make a step from
the grand canonical ensemble to the canonical one in the expressions for configurational
statistical–thermodynamic characteristics of the alloy by settingµ = 0.

In the present section, we shall assume the presence of a LRO in the alloy with the purpose
of the further use of the thermodynamic fluctuation method, in which the SRO is considered
as fluctuations of the equilibrium LRO. In the following sections, after the application of the
fluctuation method, the LRO parameters will be put equal to zero, according to the aim of the
present paper to investigate just the disordered state of the alloy.

Thus, let us replace the summation over{CR} in the partition function (2.4) by the
summation over{CR}LRO over all states with some given values of the LRO parameters
[3, 21–24, 37–40]. The expression for the corresponding grand thermodynamic potential�

can be presented as follows

� = −kBT ln4 = �0 − kBT ln10 +1� (2.11)

where

�0 = −kBT ln40 = N(v0 − µB) (2.12)

1� = −kBT ln

〈
exp

[
−(kBT )

−1
N∑
n=2

1

n!

∑
R1,R2,...,Rn

W
(n)
R1,R2,...,Rn

CR1CR2 . . . CRn

]〉
(2.13)

10 =
∑
{CR}LRO

1. (2.14)
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10 is the number of configurations corresponding to a state with a given LRO, and (see, e.g.,
[39, 40])

ln10 = −
∑
R

[PR lnPR + (1− PR) ln(1− PR)] (2.15)

where the value

PR = 〈CR〉 (2.16)

is equal to the probability of finding an A-type atom at the siteR. In (2.13) and below,〈. . .〉
means the statistical average over all states with given values of the LRO parameters:

〈. . .〉 = 10−1
∑
{CR}LRO

. . . . (2.17)

Notice that the values of the chemical potentialsµA andµB and, therefore (see (2.7)), the
value ofµ must satisfy the general thermodynamic relationships [41]

〈NA〉 = −(∂�/∂µA)T 〈NB〉 = −(∂�/∂µB)T . (2.18)

3. Cumulant expansion

According to the general approach of the thermodynamic perturbation theory
[18, 21–24, 37–41], we expand the expression (2.13) in a cumulant series in powers of the
inverse temperature

1� = −kBT ln

〈
exp

(
− X

kBT

)〉
= −kBT

∞∑
n=1

1

n!

Mn(X)

(−kBT )n
(3.1)

where

X =
N∑
t=2

1

t !

∑
R1,R2,...,Rt

W
(f )

R1,R2,...,Rt
CR1CR2 . . . CRt

(3.2)

andMn(X) is the cumulant of thenth order (see, e.g., equations (3.3) and (3.4) in [18]).
Let us consider the cumulant of the first order. By the same transformations as in (3.8) in

[18], we obtain

M1(X) = 〈X〉 = 1

2

∑
R

W
(2)
R=0M

0
2(R)

+
N∑
t=2

1

t !

∑
R1,R2,...,Rt

W
(t)
R1,R2,...,Rt

M0
1(R1)M

0
1(R2) . . .M

0
1(Rt ) (3.3)

where

M0
1(R) = PR M0

2(R) = PR(1− PR). (3.4)

The expression (3.3) can be written down in the following diagram form

M1(X) = (3.5)

to match up both the summation
∑

Ri
and the multiplierM0

li
(Ri ) to each solid vertexRi with

li lines entering it, as well as to match up the open vertex witht lines beginning in it and
finishing in solid vertexesR1,R2, . . . ,Rt to the mixing potentialW(t)

R1,R2,...,Rt
.
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To develop the diagram technique for the cumulant expansion (3.1), let us consider the
cumulantMn(X) of any given ordern. In the expression for such a cumulant, the term〈Xn〉
is always present [18]. This term can be written in the following form

〈Xn〉 =
〈( N∑

t=2

1

t !

∑
R1,R2,...,Rt

W
(t)
R1,R2,...,Rt

CR1CR2 . . . CRt

)n〉

=
〈(

1

2

N∑
i=1

W
(2)
R=0CRi

+
N∑
t=2

N∑
i1>i2>···>it=1

W
(t)
Ri1 ,Ri2 ,...,Rit

CRi1
CRi2

. . . CRit

)n〉
(3.6)

where the summations are carried over all sites of the crystal lattice numbered by 1, 2, . . . , N .
Let us transform (3.6) as follows

〈Xn〉 = n!
n∑

{m(1)i1 =0}

n∑
{m(2)i1i2}=0

. . .

n∑
{m(N)i1i2...iN

}=0

(
∑N

t=1

∑
i1>i2>···>it=1m

(t)
i1i2...it

=n)

〈 N∏
i=1

[
( 1

2W
(2)
R=0CRi

)
m
(1)
i1

m
(1)
i1

!

]

×
N∏
t=2

N∏
i1>i2>···>it=1

[
(W

(t)
Ri1 ,Ri2 ,...,Rit

CRi1
CRi2

. . . CRit
)
m
(t)
i1i2...it

m
(t)
i1i2...it

!

]〉
. (3.7)

In analogy withM1(x) (see (3.3)–(3.5)), a diagram consisting of open and solid vertexes linked
by lines can be put into correspondence to each term in (3.7). So, grouping together the terms
that correspond to topologically equivalent diagrams, we obtain

〈Xn〉 = n!
∑

diagram
(
∑N

t=1

∑N
i1>i2>···>it=1m

(t)
i1i2...it

=n)

S

p!

∑
R1 6=R2 6=···6=Rp

p∏
i=1

[
( 1

2W
(2)
R=0)

m
(1)
i

m
(1)
i !

]

×
p∏
t=2

p∏
i1>i2>···>it=1

[
(W

(t)
Ri1 ,Ri2 ,...,Rit

)
m
(t)
i1i2...it

m
(t)
i1i2...it

!

]〈 p∏
j=1

(CRj
)lj
〉
. (3.8)

where
∑

diagram means the summation over all topologically unequivalent diagrams; the
solid vertices of a diagram are numbered by 1, 2, . . . , p; the summations on the vectors
R1,R2, . . . ,Rp are carried over allN crystal lattice sites;

S = p!

t
(3.9)

is the number of nonequivalent ways of distribution ofp unequal fixed indices through thep
solid vertices of a given diagram (t is the number of elements of the topological symmetry
group of a diagram);m(1)i is the number of ‘loops’ corresponding to theith solid vertex (i.e. the
number of open vertices each with two lines beginning in it and finished in the sameith solid
vertex);m(t)i1i2...it (t > 2) is the number of open vertices each witht lines beginning in it and
finished in the samei1, i2, . . . , it solid different vertices;li is the total number of lines entering
the ith solid vertex. Note that there does not exist an open vertex witht > 2 lines beginning
in it, any two lines of which are finished in the same solid vertex (see (2.3) and (2.6)).

Horwitz and Callen [42] proved that the transition in consideration

〈Xn〉 → Mn(X)
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is equivalent (in our designations) to the simultaneous performance of the two following
changes 〈 p∏

j=1

(CRj
)lj
〉
→

p∏
j=1

M0
lj
(Rj )

∑
R1 6=R2 6=···6=Rp

→
∑

R1,R2,...,Rp

where

M0
li
(Ri ) = Mli (CRi

) (3.10)

taking into account only linked diagrams, i.e. those which do not consist of several isolated
parts. Performing these changes in (3.8), we obtain

Mn(X)

n!(−kBT )n−1
=

∑
diagram

(
∑N

t=1

∑N
i1>i2>···>it=1m

(t)
i1i2...it=n )

S

p!(−kBT )n−1

∑
R1,R2,...,Rp

×
p∏
i=1

[
( 1

2W
(2)
R=0)

m
(1)
i M0

li
(Ri )

m
(1)
i !

] p∏
t=2

p∏
i1>i2>···>it=1

[
(W

(t)
Ri1 ,Ri2 ,...,Rit

)
m
(t)
i1i2...it

m
(t)
i1i2...it

!

]
.

(3.11)

From (3.11), it follows that to each term that contributes to the cumulant series (3.1) one
can assign a linked diagram consisting of open vertices with lines beginning in it and finished
in solid vertices, if one used the following diagram technique rules:

(1) to match up the multiplier

(W
(t)
Ri1 ,Ri2 ,...,Rit

)
m
(t)
i1i2...it

m
(t)
i1i2...it

!

to all m(t)i1i2...it openvertices each witht lines beginning in it and finishing in the same
i1, i2, . . . , it soliddifferentvertices;

(2) to match up the summation
∑

Ri
and the multiplier

(W
(2)
R=0/2)

m
(1)
i M0

li
(Ri )

m
(1)
i !

to eachsolid vertexRi with li lines entering it andm(1)i ‘loops’ (see above) corresponding
to it;

(3) to multiply the expression obtained in the previous steps by a combinatorial factor

S

p!(−kBT )n−1
(3.12)

wheren andp are the total numbers of open and solid vertices in a diagram, respectively,
and the quantityS is determined in (3.9).

4. High-temperature approximation

It is evident that at sufficiently high temperatures, the terms that are proportional to the least
powers of(kBT )

−1 mainly contribute to the cumulant expansion (3.1). Taking into account



Short-range order in alloys 8651

only the terms proportional to the zero power of(kBT )
−1 in (3.1) and using (3.3), we obtain

in the corresponding high-temperature (HT) approximation

1�HT = M1(X) = 1

2
Ncµ +

N∑
t=2

1

t !

∑
R1,R2,...,Rt

V
(t)
R1,R2,...,Rt

PR1PR2 . . . PRt
(4.1)

wherec is the concentration of A-type atoms in the alloy

c = 〈NA〉
N

. (4.2)

Note that, in classification of the cumulant expansion terms by the powers of(kBT )
−1, we

neglect the temperature dependence of the quantityµ entering the cumulant expansion through
the functionW(2)

R1,R2
(see (2.6)). Substituting (4.1) into (2.11), we have the following expression

for the corresponding grand thermodynamic potential�HT

�HT = �(0)HT +
N∑
t=2

1

t !

∑
R1,R2,...,Rt

V
(t)
R1,R2,...,Rt

PR1PR2 . . . PRt
− kBT ln10 (4.3)

where

�
(0)
HT = �0 + 1

2Ncµ. (4.4)

It should be noted that the obtained expression for the grand thermodynamic potential
corresponds to that of the free energy derived in [1] (equations (2.4)–(2.6)) within the mean-
field approximation.

In the case of the disordered state of the alloy, when for anyR

PR = c (4.5)

the expression (4.3) takes the following form

�HT|PR=c = �(0)HT +N

{ N∑
t=2

ct

t !
Ṽ
(t)

0,0,...,0 + kBT [c ln c + (1− c) ln(1− c)]
}

(4.6)

where we introduced the Fourier transformsṼ (t)k1,k2,...,kt−1
of the mixing potentials determined

as [1, 35, 36]:

Ṽ
(t)
k1,k2,...,kt−1

=
∑

R1,R2,...,Rt−1

V
(t)

R1,R2,...,Rt−1,0
exp

(
−i

t−1∑
l=1

klRl

)
(4.7a)

V
(t)
R1,R2,...,Rt

= 1

Nt−1

∑
k1,k2,...,kt−1

Ṽ
(t)
k1,k2,...,kt−1

exp

[
−i

t−1∑
l=1

kl(Rl −Rn)

]
. (4.7b)

In (4.7b) and below, the summations over the wave vectors are carried out over all the points
specified by the cyclic boundary conditions in the corresponding first Brillouin zone.

In the present paper, for calculation of the Warren–Cowley SRO parametersαR determined
[43, 44] as the two-body correlation function divided byc(1− c):

αR1−R2 =
〈CR1CR2〉 − c2

c(1− c) (4.8)

as well as for calculation of the Fourier transformαk of these parameters:

αk =
∑
R

αR exp(−ik ·R) αR = N−1
∑
q

αq exp(iq ·R) (4.9)
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we use the thermodynamic fluctuation method [2–5, 39–41], whose high accuracy
was demonstrated in [1, 18, 19]. Applying this method within the high-temperature
approximation (4.3), we obtain

αk = 1−N−1
∑
q

βHT
q + βHT

k (4.10)

where

βHT
k =

[
1 +

c(1− c)
kBT

Ṽ eff
k

]−1

(4.11)

Ṽ eff
k =

N−2∑
m=0

cm

m!
Ṽ
(2+m)
k,0,0,...,0 = Ṽ (2)k + cṼ (3)k,0 +

c2

2
Ṽ
(4)
k,0,0 + · · · . (4.12)

The obtained expression (4.10) (taking into account (4.11) and (4.12)) coincides with the
expression (2.22) in [1].

5. Generalized Brout classification

Brout [21–24] offered a method for estimation of the contribution from every diagram in the
cumulant expansion by the power of the quantityz−1, wherez is the effective number of atoms
interacting with one fixed atom. Generalizing such an approach to the case of the presence of
many-body atomic interactions of arbitrary orders in an alloy, we have

kBT ∝ zt−1V (t) ⇒ V (t)

kBT
∝ [z−1]t−1 (5.1)

whereV (t) is an effective parameter that characterizes thet-body (t = 2, 3, . . .) atomic
interactions in the alloy. In (5.1), the competition between the entropy(kBT ) and energy
(zt−1V (t)) contributions to the thermodynamic potential near the temperature of the order–
disorder phase transition is taken into account. Using (5.1) as well as the following estimation
[21, 22, 24, 45] ∑

R1,R2,...,Rp

∝ N [z−1]1−p (5.2)

and putting into correspondence the multiplierV (t)/(kBT ) with every open vertex witht lines
beginning in it and the summation

∑
R with every solid vertex of a diagram, the relative

contribution from a diagram withn open andp solid vertices to the cumulant expansion (3.1)
may be estimated by the value

N [z−1]
∑

i (li−1)+1−p = N [z−1]
∑

i (li )−n+1−p. (5.3)

In (5.3) the summation
∑

i is carried over all open vertices of a diagram andti is the number
of lines beginning in theith vertex.

At a sufficiently large value of the effective radius of atomic interactions (i.e. at large value
of z), one may suppose quick convergence in the framework of the perturbation theory based
on a choice of the quantityz−1 as a small parameter of expansion. In the next two sections, the
two lowest orders (zeroth and first) of such a perturbation theory will be considered. Note that,
in the cumulant expansion, we shall not take into account the comparatively small (as proved
by Brout [18, 19, 21]) contribution from the reducible diagrams, each of which, by definition,
can be transformed into an unlinked diagram by cutting in some vertex.
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6. Generalized zero approximation

By use of (5.3), one may conclude that the contribution from only such linked irreducible
diagrams as

(6.1)

is proportional to the least, zeroth power of the quantityz−1. Each such diagram consists of one
open vertex witht lines(t = 2, 3, . . .) beginning in it and finishing int solid vertices. Let us
call the approximation in which the contribution from only such diagrams is taken into account
in (3.1) the generalized zero approximation. Within such an approximation, the expression for
the grand thermodynamic potential is the following

�zero= �0 +
N∑
t=2

1

t !

∑
R1,R2,...,Rt

W
(t)
R1,R2,...,Rt

PR1PR2 . . . PRt
− kBT ln10. (6.2)

In the case of the disordered state of the alloy, the expression (6.2) takes the following form
(see (2.6), (4.5), (4.7))

�zero|PR=c = �0 +N

{
1

2
µc2 +

N∑
t=2

ct

t !
Ṽ
(t)

0,0,...,0 + kBT [c ln c + (1− c) ln(1− c)]
}
. (6.3)

Applying the thermodynamic fluctuation method within the generalized zero
approximation, we obtain

αk =
[
1 +

c(1− c)
kBT

(µ + Ṽ eff
k )

]−1

(6.4)

where the quantityµ should be found from the following equation

N−1
∑
q

αq = 1. (6.5)

The expressions (6.4) and (6.5) correspond to the generalized (to the case of taking into account
many-body atomic interactions of arbitrary orders) spherical model approximation (see (2.24)
and (2.25) in [1]).

7. Generalized ring approximation

According to the estimation (5.3), the contributions from the terms corresponding to the
following linked irreducible diagrams of the generalized ring type

(7.1)

are proportional to the first power of the quantityz−1. In each such diagram an arbitrary number
of open vertices of arbitrary orders form a ring. Two lines (per open vertex) among all lines
beginning in open vertices are used to form a ring, whereas the other such lines finish in solid
vertices isolated from a ring. By use of the diagram technique rules described in section 3, let
us separate out the contribution1�ring corresponding to such diagrams in the expansion (3.1):

1�ring = −kBT

2

∞∑
n=1

[n(−kBT )
n]−1

∑
R1,R2,...,Rn

fR1−R2fR2−R3 . . . fRn−R1 (7.2)
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where

fRi−Rj
= PRi

(1− PRi
)

N−2∑
l=0

∑
R′1,R

′
2,...,R

′
l

PR′1PR
′
2
. . . PR′l

l!
W

(2+l)
Ri ,Rj ,R

′
1,R

′
2,...,R

′
l
. (7.3)

Taking into account the contributions corresponding to the diagrams (6.1) and (7.1) in the
cumulant expansion, we have the following form for the corresponding grand thermodynamic
potential:

�ring = �zero+1�ring (7.4)

where�zero and1�ring are determined by the expressions (6.2) and (7.2), respectively. We
shall call this approximation the generalized ring one. In the case of the disordered state of
the alloy (see (4.5)), the expression (7.2) can be transformed as follows

1�ring|PR=c =
kBT

2

∑
q

ln

[
1 +

c(1− c)
kBT

(µ + Ṽ eff
q )

]
. (7.5)

Applying the thermodynamic fluctuation method within the generalized ring
approximation, we obtain

αk =
[
1 +

c(1− c)
kBT

(µ + Ṽ eff
k + Ṽ ring

k )

]−1

(7.6)

where

Ṽ
ring
k = 1

N

∑
q

{
c(1− c)φ(4)q,k,−k/2 + (1− 2c)φ(3)q,k−q − φ(2)q

1 +φ(2)q c(1− c)/(kBT )

− [c(1− c)φ(3)q,k−q]2 + 2c(1− c)(1− 2c)φ(2)q φ
(3)
q,k−q + (1− 2c)2φ(2)q φ

(2)
k−q

2kBT [1 + φ(2)q c(1− c)/(kBT )][1 + φ(2)k−qc(1− c)/(kBT )]

}
(7.7)

φ
(n)
k1,k2,...,kn−1

= µδn,2 + 8̃(n)
k1,k2,...,kn−1

(7.8)

8̃
(n)
k1,k2,...,kn−1

=
N−n∑
l=0

cl

l!
Ṽ
(n+l)
k1,k2,...,kn−1,0,0,...,0

= V (n)k1,k2,...,kn−1

+cV (n+1)
k1,k2,...,kn−1,0

+ c2/2V (n+2)
k1,k2,...,kn−1,0,0

+ · · · (7.9)

(n = 0, 1, . . .) and the quantityµ should be found from the following equation

N−1
∑
q

αq = 1. (7.10)

Note that (see (4.12), (7.8), (7.9))

φ
(2)
k = µ + 8̃(2)

k = µ + Ṽ eff
k . (7.11)

From comparison of (6.4) with (7.6), it follows that the difference between the generalized
spherical model and ring approximations consists in the presence of the quantityṼ

ring
k , which

is temperature and concentration dependent. It easy also to verify that neglecting the nonpair
atomic interactions, when

φ
(2)
k → µ + Ṽ (2)k φ

(3)
k1,k2
→ 0 φ

(4)
k1,k2,k3

→ 0 (7.12)

the expressions (7.6) and (7.7) transform into the corresponding expressions obtained in [18]
within the ring approximation.
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With the aim of practical use, let us write down the expressions for the functions
φ
(n)
k1,k2,...,kn−1

with n = 2, 3, 4 (appearing in the expression (7.7) forṼ ring
k ) in terms of the

Fourier transformsV (n)k1,k2,...,kn−1
taking into account only pair, triplet and quadruplet atomic

interactions:

φ
(2)
k = µ + 8̃(2)

k = µ + V (2)k + cV (3)k,0 + c2/2V (4)k,0,0 (7.13)

φ
(3)
k1,k2
= 8̃(3)

k1,k2
= V (3)k1,k2

+ cV (4)k1,k2,0
(7.14)

φ
(4)
k1,k2,k3

= 8̃(4)
k1,k2,k3

= V (4)k1,k2,k3
. (7.15)

8. Calculation of interatomic potentials

Let us describe the details of application of the generalized spherical model and ring
approximations in combination with three widely used approaches for calculation of
interatomic potentials in alloys.

8.1. Generalized perturbation method

Within this method [25–28], the following form, alternative to the expression (2.1), for the
Hamiltonian of the system under consideration is used:

H = 8(0) +
N∑
n=1

1

n!

∑
R1,R2,...,Rn

8
(n)
R1,R2,...,Rn

1R11R2 . . . 1Rn

= 8(0) +
∑
R

8
(1)
R 1R +

1

2

∑
R1,R2

8
(2)
R1,R2

1R11R2

+
1

6

∑
R1,R2,R3

8
(3)
R1,R2,R3

1R11R21R3 + · · · (8.1)

where [1]

8
(n)
R1,R2,...,Rn

=
N−n∑
m=0

cm

m!

∑
R′1,R

′
2,...,R

′
m

V
(n+m)
R1,R2,...,Rn,R

′
1,R

′
2,...,R

′
m

= V (n)R1,R2,...,Rn
+ c

∑
R′1

V
(n+1)
R1,R2,...,Rn,R

′
1

+
c2

2

∑
R′1,R

′
2

V
(n+2)
R1,R2,...,Rn,R

′
1,R

′
2

+ · · · (8.2)

1R = CR − c. (8.3)

The potentials8(n)
R1,R2,...,Rn

are just those that are calculated within the generalized perturbation

method. As follows from comparison (B.6) in [1] and (7.9), the functions8̃
(n)
k1,k2,...,kn−1

appearing in the corresponding expressions (6.4) and (6.5) and (7.6)–(7.10) for the generalized
spherical model and ring approximations are the Fourier transforms of the potentials
8
(n)
R1,R2,...,Rn

(8.2):

8̃
(n)
k1,k2,...,kn−1

=
∑

R1,R2,...,Rn−1

8
(n)

R1,R2,...,Rn−1,0
exp

(
−i

n−1∑
l=1

kl ·Rl

)
. (8.4)

Thus, the results obtained by the generalized perturbation method can be directly used
for calculation of the SRO in alloys within the generalized spherical model and ring
approximations.
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8.2. Mean-field concentration functional theory

Within this theory [31–33], the following functional

ϕ(0)({PR}) = V (0) +
N∑
n=1

1

n!

∑
R1,R2,...,Rn

V
(n)
R1,R2,...,Rn

PR1PR2 . . . PRn

= V (0) +
∑
R

V
(1)
R PR +

1

2

∑
R1,R2

V
(2)
R1,R2

PR1PR2

+
1

6

∑
R1,R2,R3

V
(3)
R1,R2,R3

PR1PR2PR3 + · · · (8.5)

is calculated, where

V (0) = Nv0. (8.6)

The functional (8.5) is in fact the mean-field approximation for the energy of the alloy (compare
(8.5) with (2.5) in [1]). In the case of the disordered state of the alloy (see (4.5) and (8.2))

ϕ(0)({PR})|PR=c = 8(0). (8.7)

In analogy with (8.5), let us define the following generalized functionals(n = 0, 1, . . .)

ϕ
(n)
R1,R2,...,Rn

({PR}) =
N−n∑
m=0

1

m!

∑
R′1,R

′
2,...,R

′
m

V
(n+m)
R1,R2,...,Rn,R

′
1,R

′
2,...,R

′
m
PR′1PR

′
2
. . . PR′m

= V (n)R1,R2,...,Rn
+
∑
R′1

V
(n+1)
R1,R2,...,Rn,R

′
1
PR′1

+
1

2

∑
R′1,R

′
2

V
(n+2)
R1,R2,...,Rn,R

′
1,R

′
2
PR′1PR

′
2

+ · · · . (8.8)

It is easy to show that for anyn = 0, 1, . . .

ϕ
(n)
R1,R2,...,Rn

({PR}) =
∂ϕ

(n−1)
R1,R2,...,Rn−1

({PR})
∂PRn

= · · · = ∂n

∂PR1∂PR2 . . . ∂PRn

ϕ(0)({PR}). (8.9)

Taking into account that (see (4.5), (8.2) and (8.8))

ϕ
(n)
R1,R2,...,Rn

({PR})|PR=c = 8(n)
R1,R2,...,Rn

(8.10)

we have

8
(n)
R1,R2,...,Rn

= ∂n

∂PR1∂PR2 . . . ∂PRn

ϕ(0)({PR})|PR=c. (8.11)

Substituting the functional8(0)({PR}) calculated within the mean-field concentration
functional theory into (8.11), one can obtain the potential8

(n)
R1,R2,...,Rn

as well as its Fourier

transform8̃(n)
k1,k2,...,kn−1

(see (8.4)) for any ordern. For application of the generalized ring

approximation, it is sufficient to calculate the Fourier transformsφ̃
(n)
k1,k2,...,kn−1

for n = 2, 3, 4.
Moreover, in the case of negligible contribution from the nonpair atomic interactions, it is
sufficient to calculate onlỹ8(2)

k (see (7.11), (7.12)). Note that, for calculations within the
generalized spherical model approximation (6.4), it is sufficient to calculate only8̃

(2)
k in any

case. The calculation of the potentials8(n)
R1,R2,...,Rn

for n > 2 is also helpful for estimation of
the comparative contribution from the nonpair atomic interactions (see (8.2)).

In conclusion of this subsection, it should be emphasized that, despite the mean-field
character of the concentration functional theory (which allows us to retain the electronic
interactions in their full generality [32]), the use of it in combination with the generalized
ring approximation permits us to go beyond the mean-field framework.
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8.3. Connolly–Williams method

Within this method [29, 30], either the expression (2.1) or (more frequently) the following one

H = J (0) +
N∑
n=1

1

n!

∑
R1,R2,...,Rn

J
(n)
R1,R2,...,Rn

SR1SR2 . . . SRn

= J (0) +
∑
R

J
(1)
R SR +

1

2

∑
R1,R2

J
(2)
R1,R2

SR1SR2

+
1

6

∑
R1,R2,R3

J
(3)
R1,R2,R3

SR1SR2SR3 + · · · (8.12)

is used as for the Hamiltonian of the system under consideration. In (8.12) (see [1]):

J
(n)
R1,R2,...,Rn

=
N−n∑
m=0

1

2n+mm!

∑
R′1,R

′
2,...,R

′
m

V
(n+m)
R1,R2,...,Rn,R

′
1,R

′
2,...,R

′
m

= 1

2n

[
V
(n)
R1,R2,...,Rn

+
1

2

∑
R′1

V
(n+1)
R1,R2,...,Rn,R

′
1

+
1

8

∑
R′1R

′
2

V
(n+2)
R1,R2,...,Rn,R

′
1,R

′
2

+ · · ·
]
(8.13)

SR =
{

1 if on A-type atom is at siteR

−1 otherwise.
(8.14)

The potentialsV (n)R1,R2,...,Rn
or J (n)R1,R2,...,Rn

are just those that are calculated within the

Connolly–Williams method. The functions̃8(n)
k1,k2,...,kn−1

(the knowledge of which forn = 2
and n = 2, 3, 4 is necessary for application of the generalized spherical model and ring
approximations, respectively) can be expressed in terms of both the corresponding Fourier
transformsṼ (t)

k1,k2,...,kt−1
(see (7.9), (7.13)–(7.15)) and̃J (n)k1,k2,...,kn−1

:

8̃
(n)
k1,k2,...,kn−1

= 2n
N−n∑
l=0

(−1)′(1− 2c)′

l!
J̃
(n+l)
k1,k2,...,kn−1,0,0,...,0

= 2n
[
J̃
(n)
k1,k2,...,kn−1

− (1− 2c)J̃ (n−1)
k1,k2,...,kn−1,0

+
(1− 2c)2

2
J̃
(n+2)
k1,k2,...,kn−1,0,0

− · · ·
]

(8.15)

where

J̃
(n)
k1,k2,...,kn−1

=
∑

R1,R2,...,Rn−1

J
(n)

R1,R2,...,Rn−1,0
exp

(
−i

n−1∑
l=1

kl ·Rl

)
. (8.16)

With the aim of practical use within the generalized spherical model and ring
approximations, let us write down the expressions for the functions8̃

(n)
k1,k2,...,kn−1

atn = 2, 3, 4

in terms of the Fourier transforms̃J (n)k1,k2,...,kn−1
taking into account only pair, triplet and

quadruplet atomic interactions:

8̃
(2)
k = 4

[
J̃
(2)
k − (1− 2c)J̃ (3)k,0 +

(1− 2c)2

2
J̃
(4)
k,0,0

]
(8.17)

8̃
(3)
k1,k2
= 8[J̃ (3)k1,k2

− (1− 2c)J̃ (4)k1,k2,0
] (8.18)

8̃
(4)
k1,k2,k3

= 16J̃ (4)k1,k2,k3
. (8.19)
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Note that the generalized spherical model and ring approximations can be directly applied in
combination with the mixed-space cluster expansion within the Connolly–Williams method
(see, e.g., [10, 30, 46]), because the data on the interatomic potentials both in real and reciprocal
space forms may be used as the input data within these approximations.

9. Symmetry aspects

In section 4 of [35], the majority of the symmetry properties of the Fourier transforms of the
mixing potentials was obtained. Let us derive one more such property.

Beginning with the definition (4.7a), we have (see equation (28) in [35])

Ṽ
(n)
k1,k2,...,kn−1

=
∑

R1,R2,...,Rn−1

Ṽ
(n)
R1,R2,...,Rn

exp

[
−i

n−1∑
l=1

kl · (Rl −Rn)

]
. (9.1)

Introducing the new variables of summationR′l (l = 2, 3, . . . , n)

R′l = Rl −R1 (9.2)

into (9.1), we obtain

Ṽ
(n)
k1,k2,...,kn−1

=
∑

R′2,R
′
3,...,R

′
n

Ṽ
(n)

0,R′2,R
′
3,...,R

′
n
exp

[
−i

( n−1∑
l=2

kl ·R′l −
n−1∑
p=1

kp ·R′n
)]

= Ṽ (n)−∑n−1
p=1 kp,k2,...,kn−1

. (9.3)

In the same way, introducing the following new variables of summationR′l (l = 2, 3, . . . ,
t − 1, t + 1, . . . , n)

R′l = Rl −Rt (9.4)

wheret successively takes the values 2, 3, . . . , n (t = 1 corresponds to (9.2)), into (9.1), one
can prove the following relationships(n = 2, 3, . . . ; i = 1, 2, . . . , n− 1)

Ṽ
(n)
k1,k2,...,kn−1

= Ṽ (n)
k1,k2,...,ki−1,−

∑n−1
p=1 kp,ki+1,...,kn−1

. (9.5)

Thus, the Fourier transform of the mixing potential is not changed under the replacement of
any of its variables by the sum of all its variables with the opposite sign. So, from (9.5), for
example, we have:

Ṽ
(3)
k1,k2
= Ṽ (3)k1,−(k1+k2)

= Ṽ (3)−(k1+k2),k2
. (9.6)

Note that in derivation of the expressions (6.4), (7.6) and (7.7) corresponding to the
generalized spherical model and ring approximations, the relationships (9.5) were used. By
use of (9.5) as well as of the other symmetry properties of the Fourier transforms of the mixing
potentials [35], those expressions can be also transformed to other equivalent forms.

In section 5 of [1], it was noticed that the Hamiltonian (2.1) is invariant with respect to
the exchange A↔ B, because the designation of two sorts of atoms by symbols A and B
is an arbitrary procedure. From comparison (2.1) and (8.5), it is evident that the functional
ϕ(0)({PR}) has the same invariance. By use of this statement as well as (8.11), one may
conclude that

A ↔ B⇒ 8
(n)
R1,R2,...,Rn

→ (−1)n8(n)
R1,R2,...,Rn

(9.7)

for n = 0, 1, . . .. From (9.7), it follows that the expressions (6.4) and (7.6) are invariant with
respect to the exchange A↔ B and, therefore, the corresponding generalized spherical model
and ring approximations preserve the initial symmetry of the Hamiltonian.
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10. Conclusions

In the present paper, within the first order of a modified thermodynamic perturbation theory, by
use of the thermodynamic fluctuation method, in addition to the generalized spherical model
and the high-temperature approximations obtained in [1], the new generalized ring analytical
approximation for calculations of the grand thermodynamic potential as well as of the SRO
parameters and their Fourier transforms in disordered binary alloys with Bravais crystal lattices
was derived. An alloy was considered in the framework of the lattice gas model with many-
body atomic interactions of arbitrary orders and effective radii of action, and the inverse
effective number of atoms interacting with one fixed atom as well as the inverse temperature
were successively used as a small parameter of expansion. The details are described of the
application of the obtained approximations in combination with three widely used approaches
for calculation of interatomic potentials in alloys, the generalized perturbation [25–28] and
Connolly–Williams [29, 30] methods as well as the mean-field concentration functional theory
[31–33].

It seems to be important to compare the numerical accuracies of the obtained
approximation in the case of both the simplest model systems and an actual alloy for which
the necessary information concerning atomic interactions is available. This problem is solved
elsewhere [47].

Note that the approach advanced in the present work may be also used for the derivation of
subsequent approximations within the thermodynamic perturbation theory. Besides, it seems
to be advisable to extend this approach to the case of a multicomponent alloy with a complex
crystal lattice and/or with LRO. The elaborated formalism concerning the lattice gas model
itself may be also useful in fields other than alloy theory (see the last paragraph in section 6 of
[1]).
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